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ABSTRACT 

'nils note provides a mathematical explanation for the superiority of 

certain pivot criterion heuristics when using the Row-Colunn Sun Method to 

solve transportation problems.   In addition, new pivot criteria are developed 

using this mathematical explanation which are shown to be carputationally 

superior to the previously best pivot criteria. 
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1.  INTRXUCTiaJ 

Ccrputational studies by Dennis [3], Srinivasan-Thcnpson [7], and Glover- 

Kamey-Klingman-Napier [4] have tested different pivot criterion heuristics 

when using the Row-Column Sum Method [1] (often called the MODI method [2]) to 

solve both totally dense and nondense transportation problems. These studies 

have found tvvo of these heuristic procedures to be uniformly best. One pur- 

pose of this note is to provide a mathematical explanation for this cotputa- 

tionally derived result. Another purpose is to use this mathematical explanation 

to derive other pivot criteria which exploit all of the advantages of the two 

best pivot procedures in such a way that the search time to find the next 

pivot will be smaller. Ccrputational ocrparisons are then provided in the 

last section. The results of this study show the superiority of one new cri- 

terion to the previously best pivot criterion. 

The studies [3,4,7] tested different pivot criteria which scan the rows 

(origin nodes) of the transportation tableau one at a time until an improving 

cell is found. One of the pivot criteria tested (called the row fivst negative 

rule [4]) pivots the first encountered improving cell into the basis. Another 

criterion tested (called the modified row first negative rule [4]) scans the 

rows until it encounters the first row that contains an improving cell, and then 

selects the cell in this rcw which violates dual feasibility by the largest 

amount. Both of these pivot criteria resune scanning fron the point at which 

they previously terminated. For instance, the row first negative rule begins 

searching at the cell following the "ccme-in cell" of the previous pivot; the 

modified first negative rule begins searching in the row following the rcw in 

which the last pivot occurred. (An inproved place to resume the search is 

identified in Section 3.) 
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The priiwipal theoretical result of this note is the following: the 

procedure of pi\oting on improving cells associated with a given node until 

no such cells are left "normally" yields the same basis regardless of the order 

in which the pivots are irade. This result is used to derive a pivot criterion 

that uses the "shortest route" (minimum number of pivots) to reach the indi- 

cated basis. This result further providas a nathenatical explanation of the 

superiority of the modified first negative pivot criterion over the first 

negative rule. 

2. NOTATION AND PROBLEM STMIMEM1 

We write the transportation problem in the form: 

Minimize xoo = . ^i jxi j 
leM J J 

jeN 

(1) 

subject to: I Xi-a., 
3eN 

ieM = (1,2,. . .,m} (2) 

Z    x^ =b., 
ieM  J   J 

jeN = (1,2,. .,n} (3) 

xij i 0' ieM, jeN (4) 

where E a. = E b.. 
ieM 1 jeN ^ 

Following standard terminology, the a. parameters are called supplier and 

the b. parameters are called danands. We associate these supplies and demands 

respectively with the rows and columns of an m x n transportation tableau whose 

cells contain the "cost coefficients" c^.:. In addition, the rows of the trans- 

portation tableau are referred to as origin nodes and the columns as destination 

nodes. The cell in row i and column j of the transportatior tableau is referred 

to as cell (i,j) or arc (i,j). Lastly a set of mfn-l cells is a basis if and 

only if it forms a spanning tree for tie mfn nodes associated with the problem 

[1,2,6]. A cell (and its associated variable x^) is called basic if it is 
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oontained anaong those cells in the basis and is called nonbasic otherwise. 

A basic solution is the unique assignment of the values to the x^j 

variables satisfying equations (2) and (3) that result once each nonbasic x^j 

has been set equal to zero. If such a solution satisfies (4) for all of the 

variables, then it is called primal feasible. 

The dual problem to the transportation problem can be stated as: 

Maximize    I   ajR^ + E bjKj (5) 
ieM      jeN 

subject to: Ri + Kj ICij ,   ieM, jeN (6) 

Corresponding to a particular basis of the primal problem is a set of 

"rcw multipliers" R^ and a set of "column multipliers" K • (not unique) such 

that the "updated cost coefficient" TT • • , defined by IT • • = c^.r^~K-5» i-3  zero 

for all basic cells. A basic solution is dual feasible if in addition TT  ^ O 

for all nonbasic variables x. .. (The multipliers R. and K. on which the ^j 

are based represent values assigned to the variables of the dual of the trans- 

portation problem.) Given a basic primal feasible solution then cell (i,j) 

is called an improving cell if w ..  < 0. By fundamental linear progratming 

theory, a basic pri .".al feasible solution is optimal if no improving cells exist. 

The approach used to solve the transportation problem in the Rcw-Column 

Sum Method [1,2] is to start with a basic primal feasible solution and proceeds 

to pivot improving cells into the basis maintaininn primal feasibility until 

no improving cells exist. An efficient way of storing and updating the basis 

and associated multiplier values is contained in [5].    The ocmputational 

studies [3,4,7] present ocmputational results using different ways of picking 

the improving cell (pivot criteria) to enter the basis. The purpose of this 

note is to explain tie interrelationship of the pivot criteria tested in 

[3,4,7], to develop new pivot criteria, and present ooraputational results 
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on all of these pivot criteria. 

3. MMHEMMTCAL DEVEIiOPMPIT 

Given a basic primal feasible solution and associated multiplier values 

such that c^-Rj-K.pO for each basic cell (i,j), consider the problan of finding 

new (updated) multiplier values when cell (p,q) replaces cell (r,s) in the basis. 

Since any basis for a transportation problan is a spanning tree [1,2,6] deleting 

cell (r,s) fron the current basis splits the basis graph into two disjoint trees 

T and T where T contains node r and T contains node s. Further the spanning 
X        S XT ™ 

tree property of a basis iirplies that cell  (p,q) will reconnect these disjoint 

trees.    However, the origin node p may be in either tree T   or T .   Thus we denote 

the tree containing node p by T   and the tree containing node q by T , where one 

of the trees T   and T   is T   and the other is 1! .    Uiese observations lead to p q r s 

the following Remark.    (A similar result is given in [5].) 

Remark 1 

Updated (New) multiplier values R. and K. may be determined by setting 

K! = K.+ IT    for all j in T 
:  D pq q 

R! = R. -«    for all i in T 
i  i pq q 

Rl = R.      for all i in T 
ii p 

Proof: 

for all j in T 
P 

The proof is based on the observation that it is possible to assigr new 

values to .miltipliers R. and K. so that the multipliers associated with the 
I ' D ' 

nodes in T are unaltered. It follows that the updated costs associated with cells 
p ^^ 

in T -will likewise remain unaltered and consequently will retain the value 
— -p 

zero. To offset this, the origin multiplier values associated with origin nodes 

I 
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in T   must all be altered by """■pat vrtTereupon the destination multiplier values 

in Tg must all be altered by ir    .   The validity of these changes is verified by 

noting that the updated cost associated with any basic cell  (u,v) in Tg is TI^- 

cuv"]Ru,Kv = cuv"(VTIpq) " (V^pq* = ^"V^V = 0-    In addition the updated 

cost associated with cell  (p,q) is zero since ir'   = c   -R'-K,=cnr,-R_-{K +TW,) = 
pq  pq p q i*d p  q t*d 

Opq-Rp-I^-i^s 0. Thus the new multiplier values yield updated cost coefficients 

which are equal to zero for all basic cells, as required. 

This result iirplies that it is necessary to decrease the updated noat 

coefficients on a change cf basis step only for those cells leading fran origin 

nodes in T to destination nodes in T . Further, the amount of the decrease in 

each of these updated costs is precisely TT-Q. It is very easy to be led by these 

facts- to an erroneous conclusion. Specifically, it seems plausible to suppose 

that a good place to resume the search for an improving cell would be among 

the origin nodes in T-. This is undeniably the case if the only improving cell 

associated with the curreit basis is cell (p,q). Then, any iirproving cells that 

exist after the ctiange of basis must be associated with origin nodes in T . Logically, 

then the modified rcw first negative pivot criterion, which was found to be 

computationally best among the criteria tested [3,4,7J, should be improved by 

changing its sec/rch criterion to begin with the origin nodes in T rather than 

with the node p+1. However, the conputati^nal results in Section 4 demonstrate 

that this is not the case. 

Coupling Remark 1 with further observations, hcwever, does lead to a rule 

which is svperior to the best rule previously devised. By way of preliminary, 

note that Remark 1 also inplies that the updated cost of a cell emanating fron 

noie p is unaltered if its destination node is in T . On the other hand, the 

updated cost, is increased by ~n  if the destination node is in T . An 
^^ ^  pq q 

immediate inference is that if the cells in a particular row of the transportation 

tableau are scanned sequentially and if the improving cells in this row are 

pivoted into the basis as they are encountered, this row will contain no im- 

proving cells once all the cells in this row have been examined. Thus, since the row 1 

I 
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fixst negative rule performs this type of scanning and pivoting procedure, once 

ic has scanned a row, the row will contain no improving cells. An alternate 

pivot criterion, which would obtain the same result and Which would embody the 

philosophical approach of the modified row first negative rule, is to scan a row 

of the transportation tableau, simultaneously creating a list of all the inproving 

cells in this row and finding the roost negative of these inprovinj cells. The 

pivot criterion would then bring the roost negative inproving cell into the basis. 

It would then re-search the list, simultaneously culling out those cells whose 

qpdated costs are now non-negative and finding the most negative vqpdated cost. Onoe 

the list has been exhausted, no inproving cells exist in this row (due to the 

nonotonic property of the updated costs), and the search for an inproving cell 

should hs resumed by searching the origins in the tree (Tq) associated with the 

destination node of the last arc (p,q) entering the basis. We shall call this 

pivot criterion the revised row first negative rule. If the search is resuned in 

the row following the pivot, we shall call this pivot criterion the altered rcw 

first negative rule. In Section 4 conputational results are presented on these 

pivot criteria which demonstrate that the second of these is more efficient than 

any criteria previously tested. 

Vie will now lay analytical groundwork to provide further explanation of 

the observed empirical results, and to pave the way for future analysis of other 

choice rules that may be devised. Our results also provide a mathematical explana- 

tion of the earlier findings [3,4,7] that the modified row first negative rule is 

superior to the row first negative rule. In particular, assume row p contains two 

improving cells (p,q) and (p,t). Consider the problem of deciding which cell to 

bring into the basis first if pivoting is to continue until neither of these cells 

are pivot eligible. Essentially this decision can be resolved by characterizing 

the "basis equivalent paths" associated with these nonbasic cells. (By the "basis 

equivalent path" of nonbasic cell (i, j), we mean the unique path of basic cells 

(arcs) connecting node i to node j.) 

There aro two possibilities for the basis equivalent paths associated with 

»iwiiMiiiMiiiiiailiiMiriaiir   n  n' , inriMMiMif UMI mm^.^.^1        ...>„..._,a,,^.^ , ^^.^^ ^^üM&äSä 
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cells (p,q) and (p,t).    Namely, the paths nay be disjoint (i.e., the paths have 

no cells in oomnon) or the paths may have seme cannon cells.   The following reroarks 

identify the relevant conclusions for each case. 

Remark 2 

If the basis equivalent paths associated with (p,q) and (p,t) are disjoint, 

the order in which the cells are considered is unimportant - i.e., considering them 

in either order will result in the same amount of ooraputation and ultine.tely yield 

the same basis. 

Proof; 

Observe (without loss of generality) that pivoting cell (prq) into the basis 

will not alter the basis equivalent path associated with cell (p,t) since the cell 

leaving the basis will lie in the basis equivalent path associated with cell (p,q). 

Further, the only variables x. . whose values are altered fay this change of basis 

are those associated with the cells in the basis equivalent path of cell (p,q) and 

Xpg.    Thus, the flew values Xjj associated with cells in the basis equivalent path 

of cell (p,t) are unaltered.   Further th? updated cost associated with cell (p,t) 

is unaltered since node t must lie in the same tree as node p (i.e., teT ) since 

a path exists from node t to node p when the cell leaving the basis during this 

change of basis operation is deleted.   Therefore, cell (p,t) is still pivot 

eligible and its basis equivalent path is unaltered; consequently the same pivots 

will be performed regardless of the order in which cells (p,q) and (p,t) are 

brought into the basis and regardless of the order in which the pivots occur. 

Finally, the same basis will be attained after executing the two pivots (assunoing 

nondegeneracy). 

It is interesting to note that the foregoing remark characterizes an instance 

in which the pivots are not required to be performed sequentially, but can, in fact, 

be performed simultaneously or in parallel.   This observation could be helpful when 

designing cenputer codes to exploit parallel processing computers.   The following 

remark identifies the sonewhat more catplex relationships that hold when the basis 

equivalent paths are not disjoint. 

-^-TMÜ.-"^"-!""" *-i-~**i»**MMnHMmm n 
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Ramark 3 

Let C3ell 'ufv) denote the cell leaving the basis if cell (p,q) is pivoted 

into the basis first and let cell (r,s) denote the cell leaving the basis if 

cell (p,t) is pivoted into the basis first. Let F denote the arcs simultaneously 

in the basis equivalent paths of cells (p,q) and {p,t), let F. denote tlie 

arcs in the basi" equivalent path of cell (p,t) that are not in F , and let F 

denote thn arcs in the basis equivalent path of cell (p,q) that are not in F . 

Assume that ir  <ir . and that the current solution is non-degenerate. 

1) If the cells (u,v) and (r,s) are simultaneously in the basis equivalent 

paths of cells, {p,q) and (p,t) (i.e., (u,v), (r,s)eF ), then cells (u,v) and 

(r,s) are the sane cell. Further, the most negative ijiproving cell {p,q) should 

be pivoted into the basit first in order to minimize cotputational effort. If 

the most negative cell is pivoted first then only one pivot will rt^ult; pi- 

voting in the other order will result in making two pivots. In either case, 

the final basis will be the same. 

2) If (u,v)i-Fp, (r,s)eFt, then one pivot will result if cell (p,q) is 

pivoted into the basis first. If (p,t) is pivoted into the basis first, then 

two pivots will occur. Further, tiie bases will be different and the reduction 

in the objective function value will be largest if (p,q) is pivoted first. 

3) If (u^^eF-, (r,s)eF , then two pivots will result regardlcst of the 
4      p 

pivot order, and the samt basis is obtained. 

4) If {u,v)eF , (r,s)eF. and there exist«5 a cell (i,j)eF whose flow will 
q      ^ p 

be decreased during the pivot such that x., < X™ + x^ then two pivots will 

result regardless of the pivot order. However, different bases will result and 

the reduction in the objective function value will be largest if cell (p,q) is 

pivoted first. 

5) If (u,v)eF . (r,s)eF. and for all cells (i,j)eF whose flow will be q      x. p 

—— 
■.(..■.:...._...;,_.^„...:.:... „.,.,.„_... l^laUEiü.™ ; A '*:.-> 
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decreasod x^. > ^^^QI then tvro pivots will ly» required regardless of the 

pivot order and the same basis will be the result. 

Proof; 

The proof of tMs remark is a straightforward application of the type of 

reasoning underlying the proofs of Ranarks 1 and 2 but is quite lengthy and is 

therefore omitted. 

Remark 3 indicates that, if the most negative inproving cell is not pivoted 

into the basis first, then either extra cotputational effort may be required 

to obtain the same basis or a different basis having a lower objective function 

value nay ultimately result. Further, in no case will pivoting on the less 

negative improving ceil result in either a better objective function value or 

less cotputational work; thup. Remark 3 provides a partial explanation of 

the superiority of the modified rcM first negative rule. Also this remark 

reinforces the earlier arguments that the new pivot criteria are likely to be 

superior to the row first negative rule. In particular, one can verify using 

Renark 3 that successively pivoting on the most negative iirproving cells associated 

with a node will yield a basis which has no inproving cells in this row in the 

fewest number of pivots; also this basis will have the most inproved (objective 

function value. Notice that this statement does not iitply that the altered or 

revised row first negative rules are the best pivot criteria since it may not be 

optinal to eliminate all inproving cells in a row before proceeding to another 

row. Hcwever, the cotputational results in the next section support the 

hypothesis that 'jne of these pivot criterion heuristics is efficient. 

4. CQMPUrmCMRL RESULTS 

In this section we present corputational results on the modified rcw first 

negative rule (MRFN), the modified row first negative rule resuming the search 

in the subtree T (MRFN-T ), the altered rcw first negative rule (ARFN), aivd 
4      q 

^w 
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the revised rcfw first negative rule  (RRFN).    i'or each of tl-ieae pivot criteria, 

total solution times in seconds and the numbe: of pivot:-, arc given Ln Tc^ble 1 

for 150 transportation probiere varying in num.jar of origins, destinations, 

and admissible cells.    In addition for the MKFN-T   criterion, statistics are 

given on the total number of rows considered while searc'iing subtree T ,   (TNFC-'rJ, 

the total nuitiber of pivots made while searching subtree T    (TNFM-T )  and total 

number of rows considered (TNRC) to find the optimal solution.    Additional 

statistics given on the ARFN and RRFN rules are the total number of inproving 

cells put in the list (TNIC) and the number of pivots made from the improving 

cells on the list  (NPflL). 

The transportation problems used in the study were randonly generated using 

a uniform probability distribution.    The total supply of each m x n trans- 

portation was set equal to 100Ü m and the supply and demand amounts were picked 

using a uniform probability distribution.    The cost coefficient   of each 

admissible cell was between 1 and 100.     For each problem size and number of 

arcs, five problems were generated and solved using the MRFN pivot rule. 

The problem with tine mtdian total solution time was then solved using the 

other pivot criteria.    These statistics obtained frcm the median problems 

are reported in Table 1. 

The CDC 6600 at The University of Texas at Austin Conputation Center was 

used to solve the problems.    Computer jobs were executed during periods when 

machine load was approximately the same.    The transportation code used to solve 
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the problems is the one reported in [4] and is 5-15 times faster than any widely 

available transportation code. The row minimum start rule [ 4 ] was used to 

find the starting solution for all pivot criteria. The code is written in 

PORTHAN and was executed on the CDC 6600 using the RUN cotpiler. 

The results presented in Table 1 indicate that the ARFN pivot criteria is 

consistently better (with respert to total time) than the previously found best 

[3,4,7] pivot criterion, MRFN. This result is most interesting from a historicdl 

viewpoint since the study by Srinivasan-Thotpson [7] tested a pivot criterion 

which resembles the ARFN mle except that it fails to exploit the monotonicity 

property of the inproving costs within a row. In particular, the criterion of 

[7] introduced a variant of the modified row first negative rule whereby if 

the last pivot was associated with a cell in row p, the search for an improving 

cell was re-initiated at row p rather than starting at rcw pfl.  Thus, this 

criterion successively scanned row p and pivoted into the basis the most negative 

inproving cell. The monotonic property of the improving cells implies tliat this 

criterion ultimately performs the same pivots as the ARFN rule, but does so with 

a good deal of unnecessary effort. In particular, the criterion suffers two 

major drawbacks: (1) every cell in row p is searched at each iteration to find 

the most negative inproving cell and (2) every cell in row p is searched once 

when row p contains no inproving cells. As a result, this pivot rule was found 

to be inferior to the MRFN rule. 

By contrast, the data in Table 1 indicate that the ARFN pivot criterion 

is the best among those tested with respect to total solution time. Interestingly, 

the MRFN rule reirains the best with respect to total number of pivots, but the 

length of time required for its execution makes it a second runner to the ARFN rule. 

On the other hand, the subtree search procedure of the RRFN rule, which might seem 

a highly plausible candidate for reducing the total number of pivots and total 

solution time (as noted in the discussion following Remark 1), performed sonewhat 

less inpressively than the MRFN and the ARFN rules. 

v^4 —        iml'nüi .OMMMMM 
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In fact, the subtree search substantially increased the number of pivots using 

both the MUFN-T   and RRFN rules in .many cases.    Consequently the RRFN rule 

is the VAj^st from both standpoints and the ARFN rule emerges as the new irost 

efficient criuerion for selecting pivot elements. 

t^..^..... ^^■^■^--     ._.,.  ..._— , 
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